UNAM on May 13, 2021

at Instituto de

Geography is more important than life history

Check for
updates

in the

recent diversification of the tiger salamander complex

Kathryn M. Everson®'®, Levi N. Gray>'®, Angela G. Jones®(, Nicolette M. Lawrence®, Mary E. Foley?,
Kelly L. Sovacool*P®, Justin D. Kratovil><®, Scott Hotaling®“®, Paul M. Hime*¢®, Andrew Storferd,
Gabriela Parra-Olea’®, Ruth Percino-Daniel?®, X. Aguilar-Miguel"®, Eric M. O’Neill®®, Luis Zambrano'®,

H. Bradley Shaffer'®, and David W. Weisrock®?

2Department of Biology, University of Kentucky, Lexington, KY 40506; PDepartment of Computational Medicine and Bioinformatics, University of
Michigan, Ann Arbor, Ml 48109; “Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, CT 06269; 9School of Biological Sciences,
Washington State University, Pullman, WA 99164; °Biodiversity Institute, University of Kansas, Lawrence, KS 66045; fDepartamento de Zoologia, Instituto de
Biologia, Universidad Nacional Auténoma de México, Ciudad de México 04510, Mexico; °Departamento de Ecologia Evolutiva, Instituto de Ecologia,
Universidad Nacional Auténoma de México, Ciudad de México 04510, Mexico; "Centro de Investigacién en Recursos Bidticos, Facultad de Ciencias,
Universidad Auténoma del Estado de México, 50000 Toluca, Mexico; and 'Department of Ecology and Evolutionary Biology, La Kretz Center for California

Conservation Science, University of California, Los Angeles, CA 90095

Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved March 18, 2021 (received for review July 14, 2020)

The North American tiger salamander species complex, including
its best-known species, the Mexican axolotl, has long been a source of
biological fascination. The complex exhibits a wide range of variation
in developmental life history strategies, including populations and
individuals that undergo metamorphosis; those able to forego meta-
morphosis and retain a larval, aquatic lifestyle (i.e., paedomorphosis);
and those that do both. The evolution of a paedomorphic life history
state is thought to lead to increased population genetic differentia-
tion and ultimately reproductive isolation and speciation, but the de-
gree to which it has shaped population- and species-level divergence
is poorly understood. Using a large multilocus dataset from hundreds
of samples across North America, we identified genetic clusters across
the geographic range of the tiger salamander complex. These clusters
often contain a mixture of paedomorphic and metamorphic taxa, in-
dicating that geographic isolation has played a larger role in lineage
divergence than paedomorphosis in this system. This conclusion is
bolstered by geography-informed analyses indicating no effect of life
history strategy on population genetic differentiation and by model-
based population genetic analyses demonstrating gene flow be-
tween adjacent metamorphic and paedomorphic populations. This
fine-scale genetic perspective on life history variation establishes a
framework for understanding how plasticity, local adaptation, and
gene flow contribute to lineage divergence. Many members of the
tiger salamander complex are endangered, and the Mexican axolotl is
an important model system in regenerative and biomedical research.
Our results chart a course for more informed use of these taxa in
experimental, ecological, and conservation research.
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Life history—the complement of traits affecting survival and
reproduction over an organism’s lifetime—affects ecology
and dispersal and therefore plays a potentially important role in
shaping population structure and speciation (1, 2). The Mexican
axolotl (Ambystoma mexicanum; hereafter, “axolotl”) and re-
lated salamander species of the North American Ambystoma
tigrinum complex (Table 1) display enormous life history varia-
tion, particularly with respect to the completion of metamor-
phosis (3). Some species are considered obligate pacdomorphs,
in which sexually mature adults retain a larval, aquatic body plan
that includes external gills and an enlarged tail fin (4). Others are
considered obligate metamorphs, transforming from aquatic lar-
vae to terrestrial juveniles, eventually returning to the water to
breed as adults. Most populations are facultatively paedomorphic,
transforming under certain genetic and/or environmental condi-
tions (5-8). This lability in life history is believed to have played an
important role in the diversification of the A. tigninum complex,
particularly in the Trans-Mexican Volcanic Belt (TMVB) region,
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where several paedomorphic species, including the axolotl, are
currently recognized (9-11). Obligate paedomorphosis is estimated
to have evolved in this region multiple times (11-13) in association
with relatively large, permanent bodies of water. Presumably, re-
stricted gene flow between these isolated, paedomorphic pop-
ulations led to speciation as well as morphological adaptations to
the aquatic lifestyle (14).

The term “species complex,” while not a formal taxonomic
category, is often used to describe groups of closely related line-
ages, sometimes arising through a burst of diversification. The
tiger salamander species complex has been highlighted as a po-
tentially valuable example of such a recent and rapid radiation
(15) that could provide insight into the early mechanisms initiating
and/or maintaining diversity (16-21). However, species complexes
pose a number of challenges: phenotypic differences among line-
ages may be subtle or absent (i.e., cryptic species), ancestral poly-
morphisms may lead to incomplete lineage sorting that confounds
molecular systematic studies, and reproductive barriers may be
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Table 1. Currently recognized species in the A. tigrinum complex

Species Habitat Status Life history
A. altamirani Dugés, 1895 Streams, occasional ponds E 2
A. amblycephalum Taylor, 1940 Ponds CE 2
A. andersoni Krebs & Brandon, 1984 Lakes/ponds CE 5
A. bombypellum Taylor, 1940 Lakes/ponds, occasional streams DD 2
A. californiense Gray 1853 Vernal pools \Y 1
A. dumerilii Duges, 1870 Lakes/ponds CE 5
A. flavipiperatum Dixon, 1963 Lakes/ponds, occasional streams E 3
A. granulosum Taylor, 1944 Lakes/ponds, occasional streams CE 3
A. leorae Taylor, 1943 Streams CE 2
A. lermaense Taylor, 1940 Lakes/ponds E 3
A. mavortium Baird, 1850 Lakes/ponds LC 3
A. mexicanum Shaw & Nodder, 1798 Lakes CE 4
A. ordinarium Taylor, 1940 Streams E 3
A. rivulare Taylor, 1940 Streams E 2
A. rosaceum Taylor, 1941 Streams LC 3
A. silvense Webb, 2004 Lakes/ponds DD 3
A. taylori Brandon et al., 1982 Saline lake CE 4
A. tigrinum Green, 1825 Lakes/ponds LC 2
A. velasci Duges, 1888 Lakes/ponds, streams LC 3

Habitat preference, conservation status (“Status”), and life history strategy were compiled from Amphibia-
Web (2019) and the IUCN (2019). Conservation status abbreviations are the following: LC = least concern, V =
vulnerable, E = endangered, CE = critically endangered, and DD = data deficient. Life history codes are the
following: 1 = obligate metamorph (no paedomorphs documented in the field), 2 = strong bias toward meta-
morphosis with rare paedomorphs found in the field, 3 = both metamorphosis and paedomorphosis common in
the field, 4 = strong bias toward paedomorphosis with rare metamorphs found in the field, and 5 = obligate
paedomorph (no metamorphs documented in the field). In the text, “paedomorph” describes taxa scored as 4 or
5, while “facultative paedomorph” describes taxa scored as 2 or 3. For a full description of the geographic ranges

of each species, see S/ Appendix, Table S5.

incomplete (22-24). The reliance on phenotype for species di-
agnosis in the A. tigrinum complex may require particular scru-
tiny, as several phenotypic traits, including developmental state
and adult color pattern, can be plastic and highly variable (25-27).
Given these challenges, fundamental questions remain concerning
the reality of component lineages within the tiger salamander
complex, calling into question the current taxonomy as an accurate
reflection of its underlying evolutionary history.

Previous research has produced mixed results regarding levels
of genetic differentiation among lineages in the A. tigrinum com-
plex, as well as the relative importance of paedomorphosis as a
driver of diversification. While population- and species-level struc-
ture is evident, an important theme emerging across multiple
studies has been that reproductive barriers are porous (11, 24, 28).

A DAPC of full dataset

Shaffer and McKnight (11) noted “the striking lack of differen-
tiation among the 14 species of the tiger salamander complex”
(p- 425). Some studies have found an elevated degree of population
structure among paedomorphic populations relative to metamor-
phic populations (12, 29). However, others have shown a lack of
effect of paedomorphosis on population genetic differentiation (30)
and demonstrated that paedomorphic taxa and neighboring meta-
morphic populations interbreed (31). Furthermore, crosses between
metamorphic and paedomorphic taxa can produce viable hybrid
offspring under laboratory conditions (32, 33).

To understand the processes underlying diversification in the
tiger salamander complex, an important first step must be a range-
wide assessment of population structure and the clarification of
population- and species-level boundaries. With this groundwork,
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Fig. 1. DAPC on (A) the entire genomic dataset (without A. opacum and A. texanum outgroups) and (B) the genomic dataset without A. californiense. In
both analyses, patterns of genetic differentiation stabilized at values of K > 5 (K = 5 is shown in both plots, with colors representing genetic clusters). Points
represent individuals and ellipses show the groups identified by DAPC. The first and second principal components from the DAPC are on the x and y axes,
respectively. Results from additional values of K are provided in S/ Appendix, Figs. S3 and S4.
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insights into the role of paedomorphosis and diversification can
be addressed. For a study system of this geographic and taxo-
nomic scale, robust inference of population structure requires
information from multiple genes combined with thorough range-
wide sampling. To meet these criteria, we expand on a large mul-
tilocus dataset containing 95 nuclear loci for 93 individuals (34) to
produce a data matrix for 347 individuals across the full geographic
range of tiger salamanders (SI Appendix, Fig. S1). Given the com-
plex and somewhat checkered history of the group’s taxonomy, we
focus on a naive approach, performing population structure analy-
ses without a priori identification of taxa to resolve geographic

A Central Mexico (all groups), K=7

€

genetic clusters and characterize patterns of admixture. We also
overlay these results on the existing taxonomy to explore the cor-
respondence between current taxonomy and genetic differentiation.
We then use these data for a phylogenetic analysis to provide an
updated working hypothesis for the evolution of the group. Finally,
we test the hypothesis that life history evolution has driven specia-
tion in the tiger salamander complex, particularly through the as-
sumed isolation of paedomorphic species. In light of the life history
variation in this species complex, we use natural history information
to place taxa into one of five categories (Table 1) reflecting
their propensity to metamorphose, then use model-based tests
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Fig. 2. Population genomic analyses of the A. tigrinum species complex. (A) STRUCTURE plot of central Mexico samples. The ref. 91 method identified K =7,

albeit with some admixture among groups. However, four major geographic genetic groups are apparent and were analyzed separately in subsequent
analyses (B-E). In each plot, vertical bars represent individuals, while the y axis shows the membership probability for each group. Pie charts mapped below
the assignment plot show the average group membership probability for that locality. Some localities were combined to a single pie chart to reduce visual
clutter; see S/ Appendix, Table S1 for specific coordinates of each sample. The range of the TMVB is identified by shading, data from ref. 107. The range of the
Cuenca Oriental is outlined in red, data from ref. 31. Two geographic outliers placed in CM2 are thought to represent range introductions and are not shown
here but are discussed in supplementary text and shown in S/ Appendix, Fig. S9. (F and G) STRUCTURE results from analyses of the US and northern Mexico
groups, respectively. Detailed results are shown in S/ Appendix, Figs. S11 and S12. Black squares on the maps denote the type localities of all species included
in this study. On each STRUCTURE membership plot, salamander face symbols denote the presence of salamanders with a life history category of 1 to 3 (the
cartoon lacks gills) or 4 to 5 (paedomorphic, cartoon shows gills); groups labeled with both symbols contain a mixture of these life history categories.
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of migration to ask whether paedomorphic populations (categories
4 and 5) exhibit greater levels of genetic differentiation relative to
those that regularly metamorphose (categories 1 through 3).

Results and Discussion

Identification of Genetic Lineages and Phylogenetic Relationships. A
principal component analysis (PCA) and a discriminant analysis
of principal components (DAPC) (35) both recovered Ambys-
toma californiense Gray 1853 as genetically distinct from all other
tiger salamanders (Fig. 14 and SI Appendix, Figs. S2 and S3),
consistent with previous work (e.g., refs. 11, 36). Given that A.
californiense is the only obligate metamorph in the complex (life
history category 1, Table 1) and is genetically divergent and
geographically isolated from all other tiger salamanders evalu-
ated in this study, we focus the remaining analyses on the other
members of the complex. After removing A. californiense from
the dataset, DAPC supported the recognition of three primary
genetic clusters: US (including samples from southern Canada),
northwestern Mexico (primarily the Sierra Madre Occidental),
and the central Mexican highlands (Fig. 1B and SI Appendix, Fig.
S4). A PCA of these data produced similar clustering results,
with ordination patterns largely mirroring geographic sampling
(SI Appendix, Fig. S5). For a further discussion of the taxonomic
implications of our results, see SI Appendix, Supplementary Text.

Within central Mexico, we identified K = 7 as the best-fit
number of clusters in both DAPC and STRUCTURE analyses
(Fig. 24 and SI Appendix, Fig. S6). However, several of these
clusters were only represented as a small proportion of genetic
assignments, rather than as meaningful groups of individuals, and
visual inspection at multiple levels of K revealed four clear geo-
graphic clusters (hereafter referred to as CM1 through CM4) that
captured the primary patterns of genetic differentiation and ad-
mixture across this region (Fig. 24 and SI Appendix, Figs. S7 and
S8). Network analysis (37) also recovered groups that generally
correspond to CM1 through CM4 but with evidence of many re-
ticulations (Fig. 3). This starburst-like pattern indicates the pres-
ence of conflicting topologies within the dataset (37), which can be
caused by biological processes including recent diversification with
incomplete lineage sorting, current or evolutionarily recent gene
flow, or both. Phylogenetic analyses (38-40) recovered mono-
phyletic CM1, CM2, and CM4 clusters (see below for discussion of
CM3) but often with low statistical support (Fig. 3).

Based on type locality and range information, the CM1 cluster
includes three stream-breeding and facultatively paecdomorphic
taxa: Ambystoma altamirani Duges 1895 (41), Ambystoma leorae
Taylor 1943 (42), and Ambystoma rivulare Taylor 1940 (9). Sub-
sequent analyses of this cluster identified two admixed populations
associated with eastern and western portions of its geographic
distribution (Fig. 2B and SI Appendix, Fig. S9). Phylogenetically,
CM1 was monophyletic and sister to all other central Mexican
groups (Fig. 3).

CM2 grouped Ambystoma lermaense (Taylor 1940) (9) with
samples corresponding to the type localities and range of Ambystoma
bombypellum Taylor 1940 (9) and Ambystoma granulosum Taylor
1944 (43). There was no evidence for genetic isolation among any of
these three taxa (Fig. 2C and SI Appendix, Fig. S9).

Within CM3, population genetic analyses first separated samples
of Ambystoma ordinarium Taylor 1940 (5) from the rest (with no
admixture detected; Fig. 2D and SI Appendix, Fig. S9). Other
samples clustered into northern and southern groups with some
admixture in intermediate localities. The more southern cluster
includes two obligately paedomorphic (category 5) taxa, Ambystoma
andersoni Krebs & Brandon 1984 (44) and Ambystoma dumerilii
(Duges 1870) (45), endemic to Lakes Zacapu and Péatzcuaro, re-
spectively. All samples that could not be assigned to A. ordinarium,
A. andersoni, or A. dumerilii represent Ambystoma amblycephalum
Taylor 1940 (9) and Ambystoma flavipiperatum Dixon 1963 (46).

40f 10 | PNAS
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CM4 included the axolotl, A. mexicanum (Shaw & Nodder 1798)
(47), and Ambystoma taylori (10)—both category 4 paedomorphs—as
well as samples assigned to the facultatively paedomorphic (category
3) Ambystoma velasci (Duges 1888) (48). Subsequent DAPC and
STRUCTURE analyses of CM4 placed all but one A. mexicanum
individual sampled from Lakes Xochimilco and Chapultepec
(i.e., the remaining habitats of the axolotl) in a distinct cluster
(Fig. 2E and SI Appendix, Fig. S9), with evidence of some ad-
mixture in samples to the northwest of Mexico City.

Within the United States and Canada (excluding A. californiense),
DAPC and STRUCTURE identified three genetic clusters (K = 3),
with clear signs of admixed contact zones (Fig. 2F and SI Appendix,
Figs. S10 and S11). Geographically, these clusters are associated
with the eastern United States, the central and western United
States, and the southwestern United States and Rocky Moun-
tains (hereafter, we refer to the latter two groups as central US
and Rocky Mountain US, respectively). Populations in the eastern
United States are assignable to A. tigninum Green 1825, while
central US and Rocky Mountain US populations to Ambystoma
mavortium Baird 1850. Phylogenetic analyses corroborated these
results, albeit with extensive reticulations among clusters in the
phylogenetic network (Fig. 3) and mixed support for species—tree
relationships among the three major groups (Fig. 3 versus SI Ap-
pendix, Fig. S13). Further exploration of population structure within
each of the three US clusters recovered additional patterns of dif-
ferentiation (SI Appendix, Figs. S10 and S11), including northern
and southern clusters in the eastern United States and central
United States, and an allopatric cluster restricted to the Pacific
Northwest. Overall, our US results are similar to results from pre-
vious studies based on mitochondrial DNA, which identified hap-
lotype clades associated with the eastern United States, Great Plains
and Rocky Mountains, and the Pacific Northwest (11, 49).

All analyses of the northern Mexico group identified two ge-
netic clusters (K = 2, Fig. 2G and SI Appendix, Fig. S12). The
northern cluster corresponds to Ambystoma rosaceum Taylor 1941
(50), while the southern cluster is likely Ambystoma silvense Webb
2004 (51, 52). Phylogenetic analyses recovered each of these two
northern Mexico clusters as monophyletic, but not sister to one
another, and with few reticulate nodes in the phylogenetic net-
work (Fig. 3 and ST Appendix, Fig. S13).

Does Paedomorphosis Lead to Increased Genetic Differentiation? As
a first step in addressing this question, we used Bayesian modeling
to test for genetic isolation of paedomorphic taxa (ie., species
scored as life history category 4 or 5 in Table 1). We tested for gene
flow between paedomorphs, A. andersoni and A. dumerilii in CM3
and A. mexicanum and A. taylori in CM4, and their surrounding
facultatively paedomorphic populations. For both CM3 and CM4,
the top-ranking models included migration among all populations,
regardless of their degree of paedomorphosis (Fig. 4). Alternative
models of no migration or restricted migration (SI Appendix, Fig.
S14) were rejected with decisive Bayes factors (BF) (SI Appendix,
Table S3). In CM3, migration rates entering the A. dumerilii pop-
ulation were higher than those leaving that population, while mi-
gration rates entering and exiting A. andersoni were approximately
equal. In CM4, migration rates exiting the A. mexicanum pop-
ulation were much higher than those entering the population,
while migration rates entering and exiting A. taylori were approxi-
mately equal (Fig. 4 and SI Appendix, Table S4). An important
caveat to our migration and population structure analyses is that
divergence time is not included as a model parameter, which pre-
vents distinguishing between historical and contemporary gene flow.
Thus, our ability to differentiate ongoing from historical gene flow
in these tests is limited.

We also assessed whether a paedomorphic life history is as-
sociated with greater population genetic differentiation (calcu-
lated here as ®gr), which would be expected if paedomorphosis
is an important reproductive barrier (12). Plots of ®gr against
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Fig. 3. Results of phylogenetic network analyses (Left) and the SVDquartets-based species tree analysis (Right) of the A. tigrinum species complex. Clades are
colored according to their cluster assignments in population genetic analyses, as in Fig. 2. In phylogenetic networks, species names are only shown for
paedomorphic taxa in categories 4 or 5 (Table 1). Life history categories for all taxa are given in parentheses in the species tree. Note that SVDquartet analysis
used a subset of individuals, indicated by solid circles on the phylogenetic networks. Phylogenetic results from Bayesian and maximum likelihood concate-
nated analyses were largely concordant with the quartets tree (S/ Appendix, Fig. $13), although two important differences are indicated by dashed lines.
Bootstrap support (BS) values are indicated on each node of the quartets tree (BS values > 95 are not shown), while tips are labeled with individual iden-
tification numbers (S/ Appendix, Table S1). Branch lengths are not scaled to time or substitution rate.

geographic distance showed that comparisons involving paedo-
morphic populations were largely overlapping with those based
on facultative—facultative comparisons, with no difference in slope
or y-intercept (Fig. 4). In both CM3 and CM4, partial Mantel tests
found no significant correlation between life history and pairwise
®gr after correcting for geographic distance (Fig. 4).

The Influence of Life History on Diversification. A popular perspective
on diversification in this species complex is that paedomorphosis
promotes reproductive isolation and, ultimately, speciation (10,
11). An important theme of our results is that taxa with different
life history strategies commonly cluster together by geography in
population genetic and phylogeographic analyses (Figs. 2 and 3)
and that genetic differentiation is not significantly greater for
paedomorphic populations relative to facultative populations
(Fig. 4). Thus, the evolution of life history extremes does not appear
to be the main driver of speciation in the tiger salamander complex.
Rather, geography appears to have played a stronger role in
diversification. Our model-based migration analyses also revealed
gene flow among many populations with different life history
strategies (Fig. 4) with only one exception: A. dumerilii, which is the
only species not known to survive metamorphosis, even under
laboratory conditions (53). That only one described taxon in the
complex is demonstrably fixed for paedomorphosis and incapable of
metamorphosis raises several questions: Are the rest of the primarily
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paedomorphic populations en route to fixation, rather than ac-
tually fixed? Do lineages fixed (or nearly fixed) for paedomorphosis
tend to go extinct rapidly, making them short lived in evolutionary
time? Do facultative populations fluctuate in paedomorph frequency
over time, depending on environmental and/or demographic
conditions (5)? Do transforming and nontransforming individ-
uals interbreed in nature? While these remain open questions,
below we provide some relevant context for exploration and future
research.

Theory predicts that paedomorphosis in salamanders is most
likely to become fixed in a population when ecological conditions
are favorable in the larval, aquatic environment but unfavorable
on land (e.g., when terrestrial habitats are arid or resource limited)
(12, 54, 55). However, it is not known how long fixed populations
persist over evolutionary time; obligate paedomorphic lineages
may have arisen and gone extinct multiple times over tiger sala-
mander evolutionary history (56). One situation that would result
in complete speciation is if paedomorphosis became fixed in the
population and migration with surrounding facultatively paedo-
morphic populations ceased due to strong assortative mating and/
or selection against hybrids (57-59). However, assortative mating
within life history morphs has not been demonstrated in other
salamanders (60-62), and different tiger salamander morphs can
interbreed (63). In fact, the only known instance of positive assor-
tative mating in A. figrinum is associated with tail length (64, 65),
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Fig. 4. Maps (Left) show localities for CM3 and CM4, the two genetic clusters containing paedomorphic taxa (life history categories 4 and 5). The top-ranked
migration model is shown to the Right of each map, with median mutation-scaled effective population sizes () shown inside the shapes denoting populations.
Arrows indicate the direction of migration (M = m/p, in which m is the fraction of immigrants in each generation and p is the mutation rate per generation per
site). and median migration rates are provided next to each arrow. Full model test results are provided in S/ Appendix, Table S3, and full parameter estimates are
provided in S/ Appendix, Table S4. Scatterplots (Right) show pairwise geographic distances by pairwise ¢pst among all populations. Point colors and shapes denote
the life history strategies of the pairwise comparison being made: black squares = both populations are facultatively paedomorphic, red circles = one population
is facultatively paedomorphic and one population is obligately paedomorphic, and black stars = both populations are obligately paedomorphic. Solid lines
denote the line of best fit, calculated separately for each life history comparison. Regressions were not performed on paedomorph—-paedomorph comparisons
due to low sample sizes. Shaded areas denote the 95% confidence interval for the regression. P values to the right of each graph were calculated using a partial
mantel test, which tested for a correlation between ¢sr and life history while correcting for geographic distance (n.s. = not significant).

which might favor metamorphosed males as paedomorphic in-
dividuals can have relatively short tails (44). The evidence for
selection against intermorph offspring is also scarce. Captive
breeding using artificial fertilization has produced A. mexicanum x
A. tigrinum, A. dumerilii X A. tigrinum, A. andersoni X A. tigrinum,
and A. dumerilii x A. rivulare hybrids (7, 33, 66—68). This suggests
that postzygotic barriers are weak, although the extent to which
divergent lineages would interbreed in the wild remains a key
question in need of investigation.

If biological barriers to reproduction are limited or absent,
there are several potential mechanisms by which dispersal could
mediate gene flow between paedomorphic and metamorphic pop-
ulations. Paedomorphic individuals cannot survive in a terrestrial
environment; however, metamorphosed individuals from facul-
tatively paedomorphic populations could move between bodies
of water containing paedomorphic populations. Our demographic
analyses support this scenario, as they recovered immigration from
facultative into paedomorphic populations (Fig. 4). However,
demographic analyses also estimated emigration out of paedo-
morphic populations; thus, “obligate” paedomorphs might also
occasionally metamorphose and disperse. Occasional metamor-
phosis has been documented in several putatively pacdomorphic
populations (9, 10, 44, 69-71) and may be more prevalent than
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currently recognized because rare, transformed individuals in
nature are virtually impossible to verify (72). Importantly, even a
low frequency of transformed adults is likely sufficient to maintain
evolutionary cohesion with surrounding populations (10, 31, 73).
Alternatively, gene flow may not necessarily be mediated across a
terrestrial environment; genetic connectivity could also be main-
tained if populations have been forced into contact by water level
fluctuations in the groundwater system of a region. The dynamic
lacustrine history of the Cuenca Oriental (74), for instance, sug-
gests that isolation of some paedomorphic populations has been
punctuated by broader aquatic connections over short geological
time scales, potentially facilitating gene flow. Finally, the dispersal
of paedomorphs might be human mediated; this could partially
explain the elevated emigration rates we observed in the axolotl
(Fig. 4). Axolotls are known to be sold in local markets as food,
bait, or pets and as a consequence are sometimes moved across
central Mexico (75). Collectively, these mechanisms may explain
the maintenance of geographic genetic groups, now or in the
evolutionarily recent past, containing a range of life histories.
The genetic cohesion we detected across wide swaths of the
TMVB is particularly striking given other evidence for local adapta-
tion in this region. This scenario is perhaps best exemplified in the
Cuenca Oriental (Fig. 2E), where some lakes contain paedomorphic
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salamanders adapted to saline conditions, a very rare trait among
amphibians (76). At one site, the saline Lake Alchichica, the
population is currently considered a distinct species (4. taylori)
(10). However, our results indicate that 4. taylori is not genetically
distinct from surrounding, putatively non-saline-adapted pop-
ulations, a result consistent with a previous microsatellite-based
study that found significant gene flow to and from A. taylori (31).
While we cannot rule out the potential for localized selection and
adaptation in the A. taylori genome, our results highlight that even
populations adapted to aquatic conditions intolerable to most
other Ambystoma have not reached a level of isolation identifying
them as an independent evolutionary lineage (77).

Comparisons to Previous Work. This study included extensive geo-
graphic sampling of the tiger salamander complex, which provided
a broad spatial context to more fully understand patterns of ge-
netic variation. However, it is important to consider the possibility
that our data are simply not sensitive enough to detect genetic
differentiation associated with lineage divergence on an extremely
recent time scale. The most recent common ancestor of A. cal-
iforiense and the remainder of the species complex dates to ap-
proximately 5 million y (11, 36), and phylogenomic data indicate
that speciation across the remaining tiger salamander lineages
occurred within the last 1 million y (78). Such recent timing renders
lineage boundaries difficult to detect (15). Our markers, developed
from transcriptomic resources (34), may not have an overall sub-
stitution rate sufficient to detect such subtle genetic differentiation.
We recommend that future research uses a larger genomic dataset
or faster-evolving loci with particular focus on the sampling of
paedomorphs in this system. To this point, perhaps the strongest
evidence for the genetic divergence of paedomorphic populations
comes from past microsatellite-based work indicating the genetic
distinctiveness of A. andersoni and A. mexicanum from a select set
of populations across central Mexico (29) and the genetic distinc-
tiveness of A. taylori from neighboring populations in the Cuenca
Oriental (31). Both of these studies recovered signatures of gene
flow but identified greater overall population structure compared to
this study, which could be due to numerous factors, including a
faster microsatellite mutation rate and more limited locality sampling.

Conclusions

The extent to which populations within the tiger salamander com-
plex exhibit phenotypic plasticity in life history traits is remarkable
and is believed to have played a role in the rapid accumulation of
lineages observed in the highlands of central Mexico (11, 59). While
our results suggest that there is less species-level diversity in central
Mexico than previously recognized, there is clearly more diversity in
central Mexico than in the United States and Canada where there is
1) more geographic space and 2) less life history variation within
and between lineages. While we cannot fully explain the greater
diversity in central Mexico, our results suggest that major patterns
of diversification are related to a complex history of geographic
isolation and secondary contact, in which life history strategy has
played a less important role, at least in the long (evolutionary) run.
We agree with previous work (12) that the complex geological
history of the TMVB, including montane uplift and fluctuating
drainage connectivity since the Miocene, has been the cornerstone
of the evolutionary history of this species complex and that the
influences of geographic isolation and paedomorphosis may work
synergistically to lead to the establishment of isolated populations.
Lingering questions notwithstanding, this large-scale genetic and
geographic study establishes a framework for understanding the
evolutionary history of the A. tigninum species complex. The re-
sults presented here will facilitate comparative studies of the ax-
olotl and its allies, provide direction for conservation prioritization
and management, and strengthen the use of the tiger salamander
species complex as a model system in biology.
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Materials and Methods

Geographic Sampling. We generated data from 254 individuals sampled from
across the range of the A. tigrinum complex (S/ Appendiix, Fig. S1 and Table S1).
These individuals were combined with 93 individuals sampled in O'Neill et al.
(34) to produce a data set comprising 347 individuals. We sampled a large
number of localities (188) with one to nine individuals sampled per locality
(mean = 1.8). This sampling included 166 individuals from the US, two from
Canada, and 178 from Mexico. A. californiense samples were primarily included
as a close outgroup to the remainder of the species complex and were sampled
from localities with limited to no impacts of introgression from invasive A.
mavortium (49). Additional outgroup data were generated for two species
outside of the A. tigrinum complex: Ambystoma opacum and Ambystoma
texanum. Full details regarding the generation of these data can be found in S/
Appendix, Supplementary Material. All A. tigrinum complex species were
assigned to a life history category based on review of the published literature
and private field records from authors of this study. These life history categories
are as follows: 1 = obligate metamorph (no paedomorphs have been docu-
mented in the field), 2 = strong bias toward metamorphosis with rare paedo-
morphs found in the field, 3 = both metamorphosis and paedomorphosis
common in the field, 4 = strong bias toward paedomorphosis with rare met-
amorphs found in the field, and 5 = obligate paedomorph (no metamorphs
have been documented in the field). In the text, “paedomorph” describes taxa
scored as 4 or 5, while “facultative paedomorph” describes taxa scored as 2 or 3.

Data Collection and Sequencing. We generated DNA sequence data from a
panel of 95 nuclear loci developed specifically for the tiger salamander
species complex. A more complete description of marker development can be
found in O’Neill et al. (34) Genomic DNA was extracted using a DNeasy Blood
and Tissue kit (Qiagen). For a small number of DNA extractions, we increased
DNA quantities using a Repli-g whole-genome amplification kit (Qiagen).
We used an initial round of PCR in 96-well plate format to amplify all loci
from an individual, followed by a smaller second round of PCR to amplify
loci that did not amplify in the initial PCR. See O'Neill et al. (34) for the
details of PCR conditions and primer sequences.

PCR products from all loci were pooled for each individual in roughly equal
concentrations based on the intensity of amplification as visualized on an
agarose gel. Indexed Illlumina sequencing libraries were generated for each
individual using an lllumina Nextera XT DNA Library Preparation Kit (lllu-
mina). Subsequent to library preparation, indexed libraries were quantified
using a Qubit Fluorometer, pooled in equimolar concentrations, and checked
on an Agilent Bioanalyzer to assure proper fragmentation.

Sequencing was performed in four rounds using an lllumina MiSeq. We
performed an initial round using a total of seven individuals to test the
compatibility of the lllumina Nextera XT library kit with our PCR amplicons.
Three subsequent rounds of library preparation and sequencing were per-
formed on sets of 96 individuals each, and some individuals were sequenced
in multiple rounds due to initially low read counts. All sequencing was
performed with paired-end (PE) 150 bp reads. Overall, we generated a total
of 29,426,894 PE reads across all newly sequenced individuals, with an av-
erage of 309,757 PE reads, 1,148X coverage, and 7.6% missing loci per in-
dividual (S/ Appendix, Table S2).

Bioinformatics and Dataset Generation. All sequence reads were processed
using a newly developed bioinformatic pipeline written for this project and
available on GitHub (doi:10.5281/zenod0.3585970) that produces multiple
sequence alignments for individual loci and genome-wide single-nucleotide
polymorphism (SNP) matrices sampled from variable sites. This pipeline was
developed using the Snakemake workflow management system (79), linking
together multiple software tools to take sequence data from raw reads to
phased sequence alignments for each locus. Demultiplexed PElllumina fastq
files were used as input, with separate forward and reverse read files for
each individual. Sequence data were trimmed and filtered in Trimmomatic
(80) using a sliding window of four base pairs and a minimum average
quality score of 15. Filtered sequence reads were then aligned to reference
sequences from the O’Neill et al. dataset (34); specifically, we used the clean
sequences of an A. ordinarium sample that had high coverage and low
amounts of missing data. The resulting aligned contigs were processed using
SAMtools (81) to filter and prepare data for FreeBayes (82), which was used
to call variable sites. Variants were filtered with VCFTools (83) by removing
indels and setting a quality threshold of phred score > 20 and a minimum
read depth of 30. The program WhatsHap (84) was used to perform read-
based phasing of the data for each locus x individual contig. Finally, phased
haplotypes from each individual (two copies, regardless of homo- or het-
erozygosity) were combined into an alignment of all individuals using
MAFFT with the default auto parameter (85). We generated fasta files of
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SNPs using the SNP-sites program (86) and created a SNP genotype matrix by
sampling variable sites from a concatenated sequence alignment of all loci.
While paralogs were not identified in O’Neill et al. (34), the expanded
dataset in this study identified three loci (E12G1, E6A11, and E7G8) as po-
tential paralogs based on high alignment error and high levels of hetero-
zygosity for all individuals. These three loci were excluded from all analyses.

Across the remaining 92 loci, alignment lengths ranged from 124 to 631 bp
(avg. = 269 bp) with a total concatenated alignment of 24,788 bp. For the
full dataset (the A. tigrinum complex including A. californiense), single-locus
alignments contained an average of 37 variable sites (min. = 9, max. = 93)
and an average of 24 parsimony-informative sites (min. = 4, max. = 59).
Following further filtering of nonbiallelic SNPs and minor allele counts > 3,
population genetic analyses were based on 2,360 SNPs.

Population Structure and Lineage Discovery. We developed hypotheses of
population-level lineages across the range of the A. tigrinum complex ignoring
the existing taxonomy, starting with the identification of major geographic
patterns of differentiation and then performing a recursive set of analyses on
more geographically restricted sets of individuals. In our initial round of anal-
yses, we used two nonparametric methods: PCA and DAPC (35). While both
analyses provide a multivariate summary of genetic data, DAPC is also used to
assess the fit of data to varying numbers of population clusters. These analyses
were applied to our full genotypic dataset including A. californiense and all
remaining individuals from the A. tigrinum complex. The PCA was calculated
using the function “prcomp” in the R package stats (87), while the DAPC was
calculated using the package adegenet (88). The optimal number of principal
components to retain for DAPC was identified using cross-validation via the
xvalDapc function with default parameter values. DAPC was performed with-
out prior assignment of individuals to groups across a range of cluster levels
(K =1 to 20). We used two metrics to identify the best estimate of the primary
splits in our data. First, we used the BIC calculated in the DAPC analysis to assess
the fit of the data to different levels of K. We note that the level of K with the
absolute lowest BIC may not be a better explanation of the data than a K with a
slightly higher BIC (89); therefore, we applied this measure for general guid-
ance on a range of K that may describe the data well. We paired this assess-
ment with visualizations of the first and second principal components (S/
Appendix, Figs. S2 and S5) and DAPC ordination plots to identify the level of K
at which similar clustering patterns could be observed with minimal change at
successively higher levels of K. DAPC of the complete tiger salamander species
complex identified a consistent pattern beginning at K = 5 for high differen-
tiation of all A. californiense samples (SI Appendix, Fig. S3). Further DAPC
analysis with A. californiense removed identified a consistent pattern beginning
at K = 5 for differentiation between clusters of populations from northern and
central Mexico and three clusters of US populations (two from the Western
United States and one from the Eastern United States, S/ Appendlix, Fig. S4).

Using the clusters identified in the DAPC analysis of the total data set, we
then used both DAPC and STRUCTURE v.2.3.4 (90) to analyze subsequent data
sets comprising smaller numbers of individuals. Recursive rounds of DAPC
analyses were stopped when BIC scores showed little improvement (ABIC <
2) at values of K > 1. STRUCTURE analyses used an admixture model and
500,000 generations following a burn-in of 100,000 generations. Analyses
were performed for K = 1to 10 with 16 replicate analyses for each K. To help
identify an optimal value for K, we calculated AK using the Evanno method
(91) via the CLUMPAK web tool (92). A limitation of the Evanno method is
that it cannot estimate the likelihood of K = 1 (91); thus, we also visually
inspected individual group assignments and concluded a value of K = 1 if the
corresponding DAPC cluster showed little improvement (ABIC < 2) at values
of K> 1 or when individuals were simply being split without any geographic
or individual clustering. We also evaluated models where K was equal to the
number of currently recognized species in that genetic cluster (e.g., K = 3 for
CM1, which included the type localities for three described species: A. alta-
mirani, A. leorae, and A. rivulare). We mapped individual species assign-
ments onto these results to test the potential correspondence between
naive clustering and the existing taxonomy (S/ Appendix, Fig. S9).

Phylogenetic Reconstruction. Given the high levels of admixture among
groups, we used SplitsTree v. 4.14.8 (37, 93) to generate four phylogenetic
networks: one with all tiger salamander individuals and one each for the
U.S., central Mexico, and northern Mexico subgroups. Networks were con-
structed using uncorrected p-distances and the NeighborNet algorithm (94).

1. S. R. Palumbi, Marine speciation on a small planet. Trends Ecol. Evol. 7, 114-118
(1992).

2. S. Mopper, S. Y. Strauss, Genetic Structure and Local Adaptation in Natural Insect
Populations: Effects of Ecology, Life History, and Behavior (Springer US, 1998).
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We also used three different analytical approaches to place hypothesized
population lineages in a phylogenetic framework. For all analyses, we used a
reduced data set containing the concatenated data for two to seven rep-
resentative individuals from each population genetic cluster, which limited
computation time and avoided violating the coalescent model assumption of
zero gene flow. We first used PartitionFinder (95) to identify the number of
preferred gene partitions and their substitution models. These partitions were
used to infer a phylogeny using Bayesian Inference in BEAST v.1.8.3 (39).
Analyses were run for five million generations, sampling every 1,000 genera-
tions after the first 500,000 generations were removed as burn-in. Run con-
vergence was assessed with Tracer v.1.6.0 (96). Next, we inferred a maximum
likelihood phylogeny using RAXML v.8 (40). Node support was assessed using a
rapid bootstrap analysis with 1,000 replicates, which was summarized as a 95%
rule consensus tree using the program SumTrees in the DendroPy python li-
brary (97). All of these analyses were performed on the CIPRES Science Gate-
way server (98). Finally, we inferred phylogenetic relationships using
SVDquartets (38) implemented in PAUP* version 4.0a164 (99), sampling all
possible quartets and assessing node support with 1,000 bootstrap replicates.
For all phylogenetic analyses, trees were visualized using FigTree v.1.4.2 (100).

Tests of Migration and Population Differentiation of Paedomorphic Taxa. We
used the coalescent-based program Migrate-N v.3.2 (101) to explicitly test for
population structure and gene flow in each obligately paedomorphic species
of Ambystoma (A. andersoni, A. dumerilii, A. taylori, and A. mexicanum). For
each model (S/ Appendix, Fig. S14), we treated paedomorphic species as
distinct populations and the facultatively paedomorphic individuals from the
same genetic cluster (CM3 or CM4) as another population. The best-fitting model
was determined via BF, which were calculated using Bézier-corrected marginal
likelihoods (S/ Appendix, Table S3); the highest-ranking models have a BF = 0.
Each Migrate-N analysis ran for 50 million steps, recording every 10 steps, with a
burn-in of five million and the default heating scheme. Suitable upper bounds
for priors on population size (6) and migration rate (M) were determined from
an initial test run of 10 million steps for each analysis. Median values and 95%
confidence intervals of © and M are in Fig. 4 and S/ Appendix, Table S4.

Within CM3 and CM4, we also calculated pairwise ®sr (@ metric of pop-
ulation differentiation) among all populations using the function “pair-
PhiST” in the R package haplotypes (102). These values were plotted against
pairwise geographic distances (Fig. 4), which were calculated from locality
latitude/longitude data (S/ Appendix, Table S1) and converted to kilometers
using the function “rdist.earth” in the R package fields (103). A life history
matrix was also generated by assigning a value of 0 for pairwise comparisons
of populations with the same life history and a value of 1 for populations
with different life histories (i.e., facultatively paedomorphic versus obli-
gately paedomorphic). Paedomorph-paedomorph comparisons were omit-
ted to avoid confounding them with facultative-facultative comparisons.
Finally, we used these matrices in a partial mantel test [function “man-
tel.partial” package vegan (104)] to test for a correlation between ®st and
life history while correcting for geographic distance. Significance of this test
was determined using 999 permutations and an alpha level of 0.05.

Data Availability. Input files for all population genetic and phylogenetic analyses
are available via figshare, https:/figshare.com/projects/Life_history_strategy
does_not_reflect_genetic_differentiation_in_the_tiger_salamander_species_
complex/74115 (105). Data pipeline is available on GitHub, https:/github.com/
kelly-sovacool/tiger_salamander_project (106). Sequence data are available on
the NCBI Sequence Read Archive (BioProject accession PRINA594660). All other
study data are included in the article and/or SI Appendix.
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